
Horizontal-based Attitude Estimation for Real-time UAV control

Maiko Arakawa, Yuichi Okuyama, Shunsuke Mie, Ben Abdallah Abderazek
University of Aizu

m5221116@u-aizu.ac.jp, okuyama@u-aizu.ac.jp, okuyama@u-aizu.ac.j, benab@u-aizu.ac.jp

Abstract

An attitude estimation is an important process
for auto-piloting unmanned aerial vehicles (UAVs)
control. We implemented the attitude estimation
system from the visible horizon in the images. We use
images from the camera to compensate IMU (Inertial
measurement units). We used FPGA since the image
processing needs hard computation and UAV’s
control needs hard real-time processing. The horizon
is detected through the use of morphological
smoothing, Sobel filter and Hough transform. Run-
length encoder is used before Hough transform to
reduce memory bandwidth. The system is
implemented by high-level synthesis and on Zynq
UltraScale+MPSoC ZCU102. The result shows the
system is faster than the implementation using
desktop computer four times.

1. Introduction

Multiple companies develop auto-piloting
systems for UAVs in the field of agriculture,
transportation, surveying, and rescue. In the general
approach, UAVs estimates their attitude for self-
control with GPS and inertial measurement units
(IMU) such as an accelerometer, gyro sensor, and
magnetism sensor. However, IMU accumulate their
errors and cannot correct them by information of
IMU. Magnetism sensor is influenced by magnetism
and GPS depends on locations [1]. A vision-sensor
solve these problems. The vision-sensor can
compensate for other sensors weakness because
images from the sensor are not affected by
magnetism and location, and images can correct
errors. Image processing needs high calculation costs,
and attitude estimation must be satisfied hard real-
time processing. For both high computation costs and
hard real-time constraint, we used FPGA that has
parallelism and enables efficiency numeric operation
[2].

If the horizon is visible, it is the strongest
world reference. A sky and ground segmentation are
a critical step for detection of the horizon. The

detection algorithms use color and texture in the
image as critical features [1] [3-5]. D.Dusha el.al [6]
proposed new front-end image processing algorithm
for the horizon detection and estimated an attitude.
They showed high accuracy of 90.7, however time is
not mentioned about the calculation time. H.Guo el.
al [7] also used the horizon with the Kalman filter
and LSD algorithm [8]. The results showed higher
tracking accuracy and speed than [6], but not real-
time.

In this paper, we describe the horizontal-based
attitude estimation system combined front-end image
processing and Hough transform implemented on
FPGA. We evaluate the system with desktop by the
speed and show how much faster. Section 2 explain
the horizontal-based attitude estimation method. In
section 3, hardware implementation of the system is
provided. Section 4 show evaluation of the system,
and a conclusion is given in section 5.

2. Attitude Estimation from Images

In this section, the algorithm of the horizontal-
based attitude estimation is explained. The horizon is
decided using pre-filtering, run-length encoding and
Hough transform [9]. Pre-filtering step remove a
noise and get the only pixels related the horizon.
Run-length encoding step compress the image, so not
related pixels are skipped. Hough transform decides
the horizon. The image processing front-end which is
proposed in [6] is used in pre-filtering step. The
method has robustness for changing light, scenery,
and glare. Hough transform with run-length encoder
is described in [10]. The architecture can reduce
memory access and memory bandwidth.

273

2.1. Pre-filtering

Figure 1. Pre-filtering overview

Figure 1 shows the flow of pre-filtering step.
This step consists Morphological smoothing [11],
edge detection, dilation, and edge combination. Three
filters are applied to each RGB channels of the image,
and finally, all edges are combined. Morphological
smoothing reduce noise in the image and has edge-
preserving properties and not strong response will be
curved with circular structure element. Sobel filter
and thresholding are performed for the horizon
candidate detection. The output is binary image and
one represents a candidate(feature), zero represents
nonfeature. All candidates of RGB channels are
combined with pixel-wise AND operation leaves
only the horizon since the horizon is correlated
between each RGB channels.

2.2. Run-Length Encoding

A run-length encoding can encode an input
binary image into a zero-symbol stream. Most of the
binary image is nonfeature, then skipping them leads
effective calculation.

An image is divided into blocks, and zero-
symbols are produced for all blocks. A symbol is
represented by {rb, code, zl} triplet. The rb is whether
the current block is the first block in a line or not, the
code is the pixel values in the block, and the zl counts
zero blocks number after the current block. A zero
block means all the pixels in the block are nonfeature
pixels. In the pre-filtering step, only a strong line is
left as feature pixels, and feature pixels are crowded.
The run-length encoding can reduce memory
bandwidth and computation time using the symbol
and skipping the zero blocks.

2.3. Horizon Detection

Hough Transform is an algorithm for detecting
straight lines.	 Each line is represented in the ρ-α
space, where the ρ is a perpendicular distance of the
origin to the line and the α is the angle between the ρ
and x-axis. A line can be drawn for each feature point.
The ρ value is calculated using (1) for all feature
pixels and for all K, interval of angles. Once the ρ
value is calculated, the specific (ρ,	α) is voted. Voting
means counting the number of the each produced
(ρ,	α) value. Completing voting for all feature points,
the horizon is represented as (ρ,	α) that has largest
vote number. From the ρ and α, the gradient of the
horizon is lead from (2).

ρ	=	x cos α +	y sin α (1)

y	=	
x

tan α
+
ρ

sin α
 (2)

2.4. Attitude Estimation

The gradient and the position of the horizon is
related to the attitude. The horizon is on the image,
on the camera-coordinate. The attitude of UAV is on
the world-coordinate. The coordinate transform from
camera into world is needed.

First, we define world-coordinate and camera
coordinate in Figure 2. The z-axis of the world frame
is defined as the line from the origin to the center of
the horizon. The y-axis is the direction of aircraft’s
gravity. The x-axis works according to the right-hand
coordinate system. The z-axis of the camera frame is
the optical axis of the camera. The x-axis is parallel
to the top edge of the image plane. The y-axis is
according to the right-hand coordinate system.

The UAV’s attitude is the rotation from the
world coordinate frame to the camera coordinate
frame. The rotation about the x-axis is a pitch angle θ,
the z-axis is a roll angle ϕ and the y-axis is a yaw
angle ψ . Using only the horizon, the yaw angle is
assumed zero.

Figure 2. Coordinate definition

RGB Image

Morphological
smoothing

Morphological
smoothing

Morphological
smoothing

Candidates
Detection

Candidates
Detection

Candidates
Detection

Dilation Dilation Dilation

Candidates
Combination

R
G

B

x

y

z

x

y

z

The
horizon

274

Figure 3. Attitude of UAV's

The roll angle is dependent on only the

gradient of the visible horizon line obviously in
Figure 3. (3) is carried out.

ϕ	=	atan(-a) (3)
(u, v) is a point on the horizon, f is a focal length, and
h is the distance from the center point of the image-
plane to the point (u, v). In Figure 3, we can represent
as:

tan θ	=	
h
f

(4)

θ	=	arctan(±
u sin ϕ+v cos ϕ

f
)

(5)

From (5), the pitch angle is dependent on the roll
angle and the position on the image plane that the
horizon falls.

3. Hardware Implementation

We implemented horizontal-based attitude
estimation system using high-level synthesis. The
system the parameter of the horizon from the image.
From the camera, RGB image is captured and stored
them in the memory. Proposed circuits access to the
memory, read image data, apply to pixels pre-
filtering and horizon detection. ARM processor
calculates own attitude from the ρ and α of the
horizon. The system is shown in Figure 4.

Figure 4. System overview

Overview of the proposed circuit is shown in
Figure 5. Pre-filtering function read image data from
memory and sends pixel after filtering to Run-length
encoding function. Run-Length Encoding function
sends the zero-symbol every four lines. Hough
transform function gets the zero-symbol and updates
the vote number in the memory. Subsequently, it
sends ρ and α to the ARM processor.

Figure 5. Proposed circuit

3.1 Pre-filtering

Figure 6. Flow of pre-filtering

Pre-filtering function separates pixels related
to the horizon and pixels not related. The line buffer
and the window buffer are used to reduce hardware
resource requirement. The line buffer stores pixels
for one line. The window buffer stores pixels for
filter applying. The kernel size of filter is five by five,
thus five lines (lineBuf0 to lineBuf4), and five by five
window are used. Figure 6 shows flow of pre-
filtering function. First, in widow moving, all pixels
in the widow buffer move to left column and pixels
from the line buffer and a new pixel (pixA) are stored
in the end of the window line. Next, in the buffer
moving, the pixel move from lineBufn to lineBufn-1
and a pix A is stored in lineBuf4. Finally, filtered
pixB is send to next filter. Pre-filtering have the
erosion filter, the dilation filter and Sobel filter. For
all the filter, the difference is only kernel and the
architectures are same.

(u, v)

Center
point

f

ARM

camera I/O

Proposed
circuit

Memory

Processing system
(ARM processor)

Programmable Logic
(FPGA)

Control signal

Memory

Run-length
Encoding

Hough
transform

ARM

Pre-filtering

image streaming

filtered pixel zero-symbol

vote

p and a

window moving

buffer moving

filtering

pixA

pixB

275

3.2 Run-Length Encoding

Run-length encoding function compresses the
feature image into zero-symbol. The pre-filtered pixel
is stored to buffer for four lines and divided into two
by four blocks. If the block is not a zero-block, the
zero-symbol is produced. Counting the zero-block, if
sum of zero-block is over than maximum number, the
zero-symbol is created. Pre-filtering function reduce
unnecessary pixels, thus skipping zero-blocks
reduces memory bandwidth. Figure 7 shows a flow of
run-length encoding.

Figure 7. Flow of run-length encoding

3.3 Hough transform

Hough transform function calculate ρ value
and vote for all angles and zero-symbols. The largest
accumulated votes will correspond to the horizon. In
the implementation, the votes for a specific (ρ,	α)
value can be stored in a memory addressed by the
specific (ρ,	α) value. The step-size is one.

A flow of Hough transform function is shown
in Figure 8. We have five functions, pixel
arrangement, reset variable, block incrementing,
pixel incrementing, vote consolidation and vote. First,
pixel arrangement function decides pixel order. There
are two way of pixel arrangement by the angle. Reset
variable function reset a variable value zero. Block
incrementing function calculates the smallest ρα
value in a block. The fractional part of the ρα is used
in the pixel incrementing function. Pixel
incrementing function calculates other ρα value in a
block. After that, the vote consolidation function
decides vote number for each specific (ρα, α) in a
block and the vote function votes. Finally, the find
max function finds the largest voted (ρα, α) value as
the horizon.

Figure 8. Hough transform

3.3.1 Pixel arrangement

 All pixels in a block are labeled from p0 to
p7 and, p0 has smallest ρ value in the block. Figure 9
shows an arrangement of pixels, (A) is for
0°≤angle<90 and (B) is for 90°≤angle<180.

Figure 9. Pixel arrangement: A 0°≤angle<90°

B 90°≤angle<180°

3.3.1 Block incrementing function

Algorithm 1. Find the smallest ρα(p0)
function Find the smallest ρα(p0) (rb, zl,
angle, sinval, cosval)
{
 if the angle is less than 90 degree
 initialize row[angle] = 0
 else
 initialize row[angle] = cosval

 if this is not a first block
 // move to next block address
 col[angle] += step[angle]
 else
 // move to a first block in a next line
 col[angle] = row[angle]
 // calculate next row block address
 row[angle] += N*sinval
 // skip the zero blocks
 step[angle] = (zl+1)*M*cosval
 return col[angle]
}

for all blocks

block is
zero-block

sum of zero-
blocks > 15

sum of zero-blocks
incrementing

producing
symbol

True

False

True

False

producing
symbol

Pixel arrangement

Reset variable

Block incrementing

Pixel incrementing

Vote consolidation

Vote

angle

symbol

Find max

p0 p1
p2 p3
p4 p5
p6 p7

p1 p0
p3 p2
p5 p4
p7 p6

(A) (B)

276

The block incrementing function calculates the
smallest ρα value in a block. An algorithm is shown
in Algorithm 2. The block size is 2 by 4, and so M
and N are 2 and 4. The variable row calculates ρα(p0)
values for the first blocks in the y-direction and the
variable col calculates ρα(p0) value for the nonzero
blocks in the x-direction. First, initialize row if the
angle is less than 90 degrees, the angle 𝛼 otherwise
cos α. Next, the current block is checked whether the
current block is the first block in the line or not. If the
current block isn’t the first block, zero blocks will be
skipped. If the current block is the first block, col is
equal to row. The col is only responsible for
calculating the ρα value of the first pixel in a block.
The ρα values of other pixels are calculated by the
next pixel incrementing function.

3.3.2 Pixel incrementing function

Algorithm 2. Calculate all ρα in the block

function Calc all ρα in the block (vo, f, cos α,
sin α) {
 vo0=0
 vo1=f+ cos α
 vo2=f+ sin α
 vo3=f+ sin α+ cos α
 vo4=f+ 2sin α
 vo5=f+ 2sin α+ cos α
 vo6=f+ 3sin α
 vo7=f+ 3sin α+ cos α
}

The pixel incrementing function calculates
ρ/values of other pixels in a block using ρα(p0). The
calculation method is shown in Algorithm 3. The
variable f is a fractional part of ρα(p0) and the
variable vo has difference integer value between
ρα(p0) and other pixels. The 𝑣𝑜2 is relative to n th
pixel in the block. The efficient circuit is obtained
since the only fractional part is needed.

3.3.3 Vote consolidation function

Algorithm 3. Vote consolidation

function Vote consolidation (v, code)
{
 for all 𝑣𝑜2
 𝑣345+= 𝑐𝑜𝑑𝑒2
 endfor
}

Vote consolidation function decides vote
numbers for each specific (ρα, α) in a block. For the
block-size of 2 by 4, there are at most five different
ρα values in the whole block. The range is i to i + 4 (i
is the integer part of ρα(p0)). The 𝑣< is the vote
number of ρα(p0)+	i, α , and so if a pixel is a feature
pixel, vote number is incremented.

3.3.4 Vote function and find max function

The vote function vote 𝑣< to 𝑣<=> number. We
only need to access once (with the address i to i+4),
and each time we can accumulate the memory
contents in parallel. At the end of Hough transform,
we search the largest voted (ρα, α). We assume the
most voted (ρα, α) is the horizon. The (ρα, α) is sent
to ARM processor, and ARM processor calculates
own attitude.

4. Evaluation

We use Vivado HLS 2018.1 for a synthesis.
The proposed Zynq system is targeted by the Zynq
UltraScale+MPSoC ZCU102 xczu9eg-2ffvb1156.
The Zynq system is compared with desktop system
implemented by the software with Intel core i5-6400
CPU @2.70GHz 8GB RAM. We assume a typical
camera frame rate is 30 [Hz]. We evaluate the
hardware resources and the execution time and show
this system satisfy hardware resource limitation of
the target device. We also compared the execution
time of our proposed system and desktop system.

4.1 Performance of each function

Table 1. Resource utilization (%) of
functions

 BRAM DSP FF LUT

Pre-
filtering 2 0 1 2

RLE ~0 0 ~0 34
Hough ~0 2 33 54

Available 1824 2520 548160 274080

Table 2. Calculation cycles of functions

 Latency(cycles) Interval(cycles)
 Min Max Min Max

Pre-
filtering 8 8 9 9

RLE 1 322 1 322
Hough 3456 3456 3456 3456

277

Table 1 shows resource utilization of each
function, pre-filtering, run-length encoding and
Hough transform. Max frequency of pre-filtering,
run-length encoding, and Hough transform are
123MHz, 196MHz, and 114MHz.

Table 2 shows the synthesis results of
functions. Latency is a number of clock cycles
required for the function to compute all output values.
Interval is a number of clock cycles before the
function can accept new input data.	 Input image
size is assumed 640x480. Pre-filtering function read
24bit pixel value every nine cycles, and output result
pixel value after eight cycle. However, pre-filtering
function stores pixels into line buffer and waits line
buffer becomes full. Actually, latency is four line,
20480 cycles are assumed. Run-length encoding read
one bit pixel every cycle. Run-length encoding
function stores pixel for four line buffer, and latency
is one. Once line buffers are full, zero-symbols are
calculated and latency is 322 because of a width of
the image and setup time. Hough transform function
read one zero-symbol every 3456 cycles. In the
function, angle calculation is looped from 0 degree to
180 degree with one degree interval. Cycle time of 1
angle is assumed 19 cycles.

4.2 Performance of overall circuit

Table 3. Number of resource requirement of
overall circuit

 BRAM DSP FF LUT
Total 75 60 198921 253067

Utilization
(%) 4 2 36 92

Table 4. Latency of overall circuit

Latency(cycles)

Min Max

2719485849601 40792330444801

Table 5. Interval of overall circuit

Interval(cycles)

Min Max

2719485849601 40792330444801

 Table 3 shows resource requirement. Table
4 and Table 5 shows latency and interval of overall
circuit. Maximum frequency is 114MHz. Maximum
latency is when all the pixels in the image are feature

pixels. In actually, pre-filtering extract horizon and
latency will be small.

4.3 Comparison of computation time

Table 6. Comparison of computation time[ms]

num of symbol desktop system Zynq system
5101 4441 1229

 Table 5 show comparison result of
computation time between the Zynq system and the
desktop system using practical image. The image
drawn only horizon can be extracted a few but strong
candidates of the horizon, however the image drawn
extra object cannot be extracted only the horizon. The
number of the candidates decides the number of the
symbol, so the computation time depends on number
of the symbol. The practical image has only a strong
horizon. The desktop system takes 4441[ms] and the
Zynq system takes 1229[ms] with 5101 symbols.

5. Discussion

The result shows the Zynq system is four
times faster than the desktop system, but not real-
time. Pre-filtering and run-length encoding have
lower latency than Hough transform. In this
evaluation, one Hough transform function calculate,
so calculation with some Hough transform functions
in parallel will be improve speed. The variability of
resource requirement is big. LUT is used thirty times
as much as Block RAM. The Zynq system will be
more effective performance reconsidering memory
management.

6. Conclusion

In this paper, we describe horizontal-based
attitude estimation system on FPGA using high-level
synthesis. This system uses the image from the
camera, finds the horizon in the image, and then
estimates attitude from the horizon. The image
includes an unrelated information to the horizon.
First of all, pre-filtering function reduces unnecessary
pixels and extracts only feature pixels. Next, run-
length encoding function compresses the feature
image into zero-symbol. Last, Hough transform
function finds out the horizon. Run-length encoding
function reduces the memory bandwidth, and the
resources are used efficiently by Hough transform
function.

Acknowledgements

278

This work was supported by JSPS KAKENHI Grant
Number JP18K11413.
References
[1] E. R. Shabayek, C. Demonceaux, O. Morel, D.
Fofi, “Vision Based UAV Attitude Estimation:
Progress and Insights,” Journal of Intelligent and
Robotic Systems, Springer Verlag, pp. 295-308, 2011
[2] W. S. Fife, J. K. Archibald, “Reconfigurable On-
Board Vision Processing for Small Autonomous
Vehicles,” Journal on Embedded System, 2007
[3] Y. WE, G. LI, W. LI, X. ZHANG, J. CHE, F.
QIAO, “A Monocular Vision-based Attitude
Estimation Approach for small Unmanned Aerial
chicles and its Experimental Verification,”
Navigation and Control Conference, 2016
[4] S. Todorovic, C.Nechyba, P. G. Ifju,
“Sky/Ground Modeling for Autonomous MAV
Flight,” International Conference on Robotics &
Automation, pp14-19, 2003
[5] S. Thurrowgood, D.Soccol, R. J. D. Moore, D.
Bland, M. V. Srinivasan, “A vision based System for
Attitude estimation of UAVs,” in Intelligent Robots
and Systems, 2009
[6] D. Dusha, W. Boles, R. Walker, “Attitude
Estimation for a Fixed-Wing Aircraft Using Horizon
Detection and Optical Flow,” Digital Image
Computing Techniques and Applications, Australian
Research Center for Aerospace Automation, 2007
[7] H.Guo, Y. Zhang, J. Zhou, Y. Zhang, “A FAST
AND ROBUST VISION-BASED HORIZON
TRACKING METHOD,” Wavelet Active Media
Technology and Information Processing
(ICCWAMTIP), 12th International Computer
Conference, 2015
[8] R. G. Von, J. Jakubowicz, J. Morel, G. Randall,
"LSD: A fast line segment detector with a false
detection control", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 4, pp.
722-732
 [9] R. O. Duda and P. E. Hart, “Use of the Hough
transformation to detect lines and curves in pitures,”
Commun. ACM vol. 15, pp. 11-15, 1972
[10] Z. Chen, A. W. Y. Su, M. Sun, “Resource-
efficient FPGA Architecture and Implementation of
Hough Transform”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, pp.
1419-1428, Aug. 2012
[11] R. C. Gonzalez, R. E. Woods, "Digital image
processing" in Upper Saddle River, N.J.:Prentice Hall,
2002

279

