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Abstract 

An  attitude estimation is an important process 
for auto-piloting unmanned aerial vehicles (UAVs) 
control. We implemented the attitude estimation 
system from the visible horizon in the images. We use 
images from the camera to compensate IMU (Inertial 
measurement units). We used FPGA since the image 
processing needs hard computation and UAV’s 
control needs hard real-time processing. The horizon 
is detected through the use of morphological 
smoothing, Sobel filter and Hough transform. Run-
length encoder is used before Hough transform to 
reduce memory bandwidth. The system is 
implemented by high-level synthesis and on Zynq 
UltraScale+MPSoC ZCU102. The result shows the 
system is faster than the implementation using 
desktop computer four times.  

1. Introduction 

Multiple companies develop auto-piloting 
systems for UAVs in the field of agriculture, 
transportation, surveying, and rescue.  In the general 
approach, UAVs estimates their attitude for self-
control with GPS and inertial measurement units 
(IMU) such as an accelerometer, gyro sensor, and 
magnetism sensor. However, IMU accumulate their 
errors and cannot correct them by information of 
IMU. Magnetism sensor is influenced by magnetism 
and GPS depends on locations [1].  A vision-sensor 
solve these problems.  The vision-sensor can 
compensate for other sensors weakness because 
images from the sensor are not affected by 
magnetism and location, and images can correct 
errors. Image processing needs high calculation costs, 
and attitude estimation must be satisfied hard real-
time processing. For both high computation costs and 
hard real-time constraint, we used FPGA that has 
parallelism and enables efficiency numeric operation 
[2]. 

If the horizon is visible, it is the strongest 
world reference. A sky and ground segmentation are 
a critical step for detection of the horizon. The 

detection algorithms use color and texture in the 
image as critical features [1] [3-5]. D.Dusha el.al [6] 
proposed new front-end image processing algorithm 
for the horizon detection and estimated an attitude. 
They showed high accuracy of 90.7, however time is 
not mentioned about the calculation time. H.Guo el. 
al [7] also used the horizon with the Kalman filter 
and LSD algorithm [8]. The results showed higher 
tracking accuracy and speed than [6], but not real-
time.  

In this paper, we describe the horizontal-based 
attitude estimation system combined front-end image 
processing and Hough transform implemented on 
FPGA. We evaluate the system with desktop by the 
speed and show how much faster. Section 2 explain 
the horizontal-based attitude estimation method. In 
section 3, hardware implementation of the system is 
provided. Section 4 show evaluation of the system, 
and a conclusion is given in section 5.  
 
2. Attitude Estimation from Images  

In this section, the algorithm of the horizontal-
based attitude estimation is explained. The horizon is 
decided using pre-filtering, run-length encoding and 
Hough transform [9].  Pre-filtering step remove a 
noise and get the only pixels related the horizon. 
Run-length encoding step compress the image, so not 
related pixels are skipped. Hough transform decides 
the horizon. The image processing front-end which is 
proposed in [6] is used in pre-filtering step. The 
method has robustness for changing light, scenery, 
and glare. Hough transform with run-length encoder 
is described in [10]. The architecture can reduce 
memory access and memory bandwidth. 
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2.1. Pre-filtering 

 

Figure 1. Pre-filtering overview 

Figure 1 shows the flow of pre-filtering step. 
This step consists Morphological smoothing [11], 
edge detection, dilation, and edge combination. Three 
filters are applied to each RGB channels of the image, 
and finally, all edges are combined.  Morphological 
smoothing reduce noise in the image and has edge-
preserving properties and not strong response will be 
curved with circular structure element. Sobel filter 
and thresholding are performed for the horizon 
candidate detection. The output is binary image and 
one represents a candidate(feature), zero represents 
nonfeature. All candidates of RGB channels are 
combined with pixel-wise AND operation leaves 
only the horizon since the horizon is correlated 
between each RGB channels. 

2.2. Run-Length Encoding 

A run-length encoding can encode an input 
binary image into a zero-symbol stream.  Most of the 
binary image is nonfeature, then skipping them leads 
effective calculation.  

An image is divided into blocks, and zero-
symbols are produced for all blocks. A symbol is 
represented by {rb, code, zl} triplet. The rb is whether 
the current block is the first block in a line or not, the 
code is the pixel values in the block, and the zl counts 
zero blocks number after the current block. A zero 
block means all the pixels in the block are nonfeature 
pixels. In the pre-filtering step, only a strong line is 
left as feature pixels, and feature pixels are crowded. 
The run-length encoding can reduce memory 
bandwidth and computation time using the symbol 
and skipping the zero blocks. 

 

 

2.3. Horizon Detection 

Hough Transform is an algorithm for detecting 
straight lines.	 Each line is represented in the ρ-α 
space, where the ρ is a perpendicular distance of the 
origin to the line and the α is the angle between the ρ 
and x-axis. A line can be drawn for each feature point. 
The ρ  value is calculated using (1) for all feature 
pixels and for all K, interval of angles. Once the ρ 
value is calculated, the specific (ρ,	α) is voted. Voting 
means counting the number of the each produced 
(ρ,	α) value. Completing voting for all feature points, 
the horizon is represented as (ρ,	α)  that has largest 
vote number. From the ρ and α, the gradient of the 
horizon is lead from (2). 

 
ρ	=	x cos α +	y sin α (1) 

y	=	
x

tan α
+
ρ

sin α
 (2) 

 
2.4. Attitude Estimation 

The gradient and the position of the horizon is 
related to the attitude. The horizon is on the image, 
on the camera-coordinate. The attitude of UAV is on 
the world-coordinate. The coordinate transform from 
camera into world is needed.  

First, we define world-coordinate and camera 
coordinate in Figure 2. The z-axis of the world frame 
is defined as the line from the origin to the center of 
the horizon. The y-axis is the direction of aircraft’s 
gravity. The x-axis works according to the right-hand 
coordinate system. The z-axis of the camera frame is 
the optical axis of the camera. The x-axis is parallel 
to the top edge of the image plane. The y-axis is 
according to the right-hand coordinate system.  

The UAV’s attitude is the rotation from the 
world coordinate frame to the camera coordinate 
frame. The rotation about the x-axis is a pitch angle θ, 
the z-axis is a roll angle ϕ and the y-axis is a yaw 
angle ψ . Using only the horizon, the yaw angle is 
assumed zero. 
 

 
Figure 2. Coordinate definition 
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Figure 3. Attitude of UAV's 

 
The roll angle is dependent on only the 

gradient of the visible horizon line obviously in 
Figure 3. (3) is carried out. 

ϕ	=	atan(-a) (3) 
(u, v) is a point on the horizon, f is a focal length, and 
h is the distance from the center point of the image-
plane to the point (u, v). In Figure 3, we can represent 
as: 

tan θ	=	
h
f

  
(4) 

θ	=	arctan(±
u sin ϕ+v cos ϕ

f
) 

(5) 

 
From (5), the pitch angle is dependent on the roll 
angle and the position on the image plane that the 
horizon falls. 
  
3. Hardware Implementation 

We implemented horizontal-based attitude 
estimation system using high-level synthesis. The 
system the parameter of the horizon from the image. 
From the camera, RGB image is captured and stored 
them in the memory. Proposed circuits access to the 
memory, read image data, apply to pixels pre-
filtering and horizon detection. ARM processor 
calculates own attitude from the ρ  and α  of the 
horizon. The system is shown in Figure 4.  

 

Figure 4. System overview 

Overview of the proposed circuit is shown in 
Figure 5. Pre-filtering function read image data from 
memory and sends pixel after filtering to Run-length 
encoding function. Run-Length Encoding function 
sends the zero-symbol every four lines. Hough 
transform function gets the zero-symbol and updates 
the vote number in the memory. Subsequently, it 
sends ρ and α to the ARM processor. 

 

Figure 5. Proposed circuit 

 
3.1 Pre-filtering 
 

 

Figure 6. Flow of pre-filtering 

Pre-filtering function separates pixels related 
to the horizon and pixels not related. The line buffer 
and the window buffer are used to reduce hardware 
resource requirement. The line buffer stores pixels 
for one line. The window buffer stores pixels for 
filter applying. The kernel size of filter is five by five, 
thus five lines (lineBuf0 to lineBuf4), and five by five 
window are used. Figure 6 shows flow of pre-
filtering function. First, in widow moving, all pixels 
in the widow buffer move to left column and pixels 
from the line buffer and a new pixel (pixA) are stored 
in the end of the window line. Next, in the buffer 
moving, the pixel move from lineBufn to lineBufn-1 
and a pix A is stored in lineBuf4. Finally, filtered 
pixB is send to next filter. Pre-filtering have the 
erosion filter, the dilation filter and Sobel filter. For 
all the filter, the difference is only kernel and the 
architectures are same. 
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3.2 Run-Length Encoding 

Run-length encoding function compresses the 
feature image into zero-symbol. The pre-filtered pixel 
is stored to buffer for four lines and divided into two 
by four blocks. If the block is not a zero-block, the 
zero-symbol is produced. Counting the zero-block, if 
sum of zero-block is over than maximum number, the 
zero-symbol is created. Pre-filtering function reduce 
unnecessary pixels, thus skipping zero-blocks 
reduces memory bandwidth. Figure 7 shows a flow of 
run-length encoding. 

 
Figure 7. Flow of run-length encoding 

3.3 Hough transform 

Hough transform function calculate ρ  value 
and vote for all angles and zero-symbols. The largest 
accumulated votes will correspond to the horizon. In 
the implementation, the votes for a specific (ρ,	α) 
value can be stored in a memory addressed by the 
specific (ρ,	α) value. The step-size is one. 

A flow of Hough transform function is shown 
in Figure 8. We have five functions, pixel 
arrangement, reset variable, block incrementing, 
pixel incrementing, vote consolidation and vote. First, 
pixel arrangement function decides pixel order. There 
are two way of pixel arrangement by the angle. Reset 
variable function reset a variable value zero. Block 
incrementing function calculates the smallest ρα 
value in a block. The fractional part of the ρα is used 
in the pixel incrementing function. Pixel 
incrementing function calculates other  ρα value in a 
block. After that, the vote consolidation function 
decides vote number for each specific  (ρα, α) in a 
block and the vote function votes. Finally, the find 
max function finds the largest voted (ρα, α) value as 
the horizon. 

 
Figure 8. Hough transform 

 
3.3.1 Pixel arrangement 

 All pixels in a block are labeled from p0 to 
p7 and, p0 has smallest ρ value in the block. Figure 9 
shows an arrangement of pixels, (A) is for 
0°≤angle<90 and (B) is for 90°≤angle<180. 

 
Figure 9. Pixel arrangement: A 0°≤angle<90° 

B 90°≤angle<180° 
 
3.3.1 Block incrementing function 

Algorithm 1. Find the smallest ρα(p0) 
function Find the smallest ρα(p0) (rb, zl, 
angle, sinval, cosval) 
{ 
    if the angle is less than 90 degree 
        initialize row[angle] = 0 
    else 
        initialize row[angle] = cosval 
 
    if this is not a first block 
        // move to next block address 
        col[angle] += step[angle] 
    else 
        // move to a first block in a next line 
        col[angle] = row[angle] 
    // calculate next row block address 
    row[angle] += N*sinval 
    // skip the zero blocks 
    step[angle] = (zl+1)*M*cosval 
    return col[angle] 
} 
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The block incrementing function calculates the 
smallest ρα value in a block. An algorithm is shown 
in Algorithm 2. The block size is 2 by 4, and so M 
and N are 2 and 4. The variable row calculates ρα(p0) 
values for the first blocks in the y-direction and the 
variable col calculates ρα(p0)  value for the nonzero 
blocks in the x-direction. First, initialize row if the 
angle is less than 90 degrees, the angle 𝛼 otherwise 
cos α. Next, the current block is checked whether the 
current block is the first block in the line or not. If the 
current block isn’t the first block, zero blocks will be 
skipped. If the current block is the first block, col is 
equal to row. The col is only responsible for 
calculating the ρα value of the first pixel in a block. 
The ρα  values of other pixels are calculated by the 
next pixel incrementing function. 

3.3.2 Pixel incrementing function 

Algorithm 2. Calculate all  ρα in the block 

function Calc all  ρα in the block (vo, f, cos α, 
sin α) { 
    vo0=0 
    vo1=f+ cos α 
    vo2=f+ sin α 
    vo3=f+ sin α+ cos α 
    vo4=f+ 2sin α 
    vo5=f+ 2sin α+ cos α 
    vo6=f+ 3sin α 
    vo7=f+ 3sin α+ cos α 
} 

The pixel incrementing function calculates 
ρ/values of other pixels in a block using ρα(p0). The 
calculation method is shown in Algorithm 3. The 
variable f  is a fractional part of ρα(p0)  and the 
variable vo  has difference integer value between 
ρα(p0)  and other pixels. The 𝑣𝑜2  is relative to n th 
pixel in the block. The efficient circuit is obtained 
since the only fractional part is needed. 

3.3.3 Vote consolidation function 

Algorithm 3. Vote consolidation 

function Vote consolidation (v, code) 
{ 
    for all 𝑣𝑜2 
        𝑣345+= 𝑐𝑜𝑑𝑒2 
    endfor 
} 

 

Vote consolidation function decides vote 
numbers for each specific  (ρα, α) in a block. For the 
block-size of 2 by 4, there are at most five different 
ρα values in the whole block. The range is i to i + 4 (i 
is the integer part of ρα(p0) ). The 𝑣<  is the vote 
number of ρα(p0)+	i, α , and so if a pixel is a feature 
pixel, vote number is incremented. 
 
3.3.4 Vote function and find max function 

The vote function vote 𝑣< to 𝑣<=> number. We 
only need to access once (with the address i to i+4), 
and each time we can accumulate the memory 
contents in parallel. At the end of Hough transform, 
we search the largest voted (ρα, α). We assume the 
most voted (ρα, α) is the horizon. The  (ρα, α) is sent 
to ARM processor, and ARM processor calculates 
own attitude. 

 
4. Evaluation 

We use Vivado HLS 2018.1 for a synthesis. 
The proposed Zynq system is targeted by the Zynq 
UltraScale+MPSoC ZCU102 xczu9eg-2ffvb1156. 
The Zynq system is compared with desktop system 
implemented by the software with Intel core i5-6400 
CPU @2.70GHz 8GB RAM. We assume a typical 
camera frame rate is 30 [Hz]. We evaluate the 
hardware resources and the execution time and show 
this system satisfy hardware resource limitation of 
the target device. We also compared the execution 
time of our proposed system and desktop system. 

4.1 Performance of each function 

Table 1. Resource utilization (%) of 
functions 

 BRAM DSP FF LUT 

Pre-
filtering 2 0 1 2 

RLE ~0 0 ~0 34 
Hough ~0 2 33 54 

Available 1824 2520 548160 274080 
 

Table 2. Calculation cycles of functions 
 

 Latency(cycles) Interval(cycles) 
 Min Max Min Max 

Pre-
filtering 8 8 9 9 

RLE 1 322 1 322 
Hough 3456 3456 3456 3456 
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Table 1 shows resource utilization of each 
function, pre-filtering, run-length encoding and 
Hough transform. Max frequency of pre-filtering, 
run-length encoding, and Hough transform are 
123MHz, 196MHz, and 114MHz. 

Table 2 shows the synthesis results of 
functions. Latency is a number of clock cycles 
required for the function to compute all output values. 
Interval is a number of clock cycles before the 
function can accept new input data.	 Input image 
size is assumed 640x480. Pre-filtering function read 
24bit pixel value every nine cycles, and output result 
pixel value after eight cycle. However, pre-filtering 
function stores pixels into line buffer and waits line 
buffer becomes full. Actually, latency is four line, 
20480 cycles are assumed. Run-length encoding read 
one bit pixel every cycle. Run-length encoding 
function stores pixel for four line buffer, and latency 
is one. Once line buffers are full, zero-symbols are 
calculated and latency is 322 because of a width of 
the image and setup time. Hough transform function 
read one zero-symbol every 3456 cycles. In the 
function, angle calculation is looped from 0 degree to 
180 degree with one degree interval. Cycle time of 1 
angle is assumed 19 cycles. 
 
4.2 Performance of overall circuit 
 
Table 3. Number of resource requirement of 
overall circuit 
 

 BRAM DSP FF LUT 
Total 75 60 198921 253067 

Utilization 
(%) 4 2 36 92 

 
Table 4. Latency of overall circuit 

 
Latency(cycles) 

Min Max 

2719485849601 40792330444801 

 
Table 5. Interval of overall circuit 

 
Interval(cycles) 

Min Max 

2719485849601 40792330444801 

 

 Table 3 shows resource requirement. Table 
4 and Table 5 shows latency and interval of overall 
circuit. Maximum frequency is 114MHz. Maximum 
latency is when all the pixels in the image are feature 

pixels. In actually, pre-filtering extract horizon and 
latency will be small. 

4.3 Comparison of computation time 

Table 6. Comparison of computation time[ms] 

num of symbol desktop system Zynq system 
5101 4441 1229 

 Table 5 show comparison result of 
computation time between the Zynq system and the 
desktop system using practical image. The image 
drawn only horizon can be extracted a few but strong 
candidates of the horizon, however the image drawn 
extra object cannot be extracted only the horizon. The 
number of the candidates decides the number of the 
symbol, so the computation time depends on number 
of the symbol. The practical image has only a strong 
horizon. The desktop system takes 4441[ms] and the 
Zynq system takes 1229[ms] with 5101 symbols. 

5. Discussion 

The result shows the Zynq system is four 
times faster than the desktop system, but not real-
time. Pre-filtering and run-length encoding have 
lower latency than Hough transform. In this 
evaluation, one Hough transform function calculate, 
so calculation with some Hough transform functions 
in parallel will be improve speed. The variability of 
resource requirement is big. LUT is used thirty times 
as much as Block RAM. The Zynq system will be 
more effective performance reconsidering memory 
management. 

6. Conclusion 

In this paper, we describe horizontal-based 
attitude estimation system on FPGA using high-level 
synthesis. This system uses the image from the 
camera, finds the horizon in the image, and then 
estimates attitude from the horizon. The image 
includes an unrelated information to the horizon. 
First of all, pre-filtering function reduces unnecessary 
pixels and extracts only feature pixels. Next, run-
length encoding function compresses the feature 
image into zero-symbol. Last, Hough transform 
function finds out the horizon. Run-length encoding 
function reduces the memory bandwidth, and the 
resources are used efficiently by Hough transform 
function.  
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